ultima9999
- 43
- 0
Just want to check my answer.
Find the equation of the tangent to the curve y^3 + x^2 \cosh y + \sinh^3 x = 8 at the point (0, 2)
I firstly found the derivative and the gradient of the curve at point (0, 2)
3y^2 \cdot \frac{dy}{dx} + x \cosh y + x^2 \sinh y \cdot \frac{dy}{dx} + 3 \sinh^3 x \cosh x = 0
\Rightarrow \frac{dy}{dx} (3y^2 + x^2 \sinh y) = - x \cosh y - 3 \sinh^3 x \cosh x
\Rightarrow \frac{dy}{dx} = \frac{- x \cosh y - 3 \sinh^3 x \cosh x}{3y^2 + x^2 \sinh y}
Substitute x = 0\ \mbox{and}\ y = 2 into the equation and I get a gradient of 0 at point (0, 2).
\begin{align*}<br /> y - 2 = 0 (x - 0) \\<br /> \Rightarrow y = 2<br /> \end{align*}
Therefore, the equation of the tangent at point (0, 2) is y = 2
Find the equation of the tangent to the curve y^3 + x^2 \cosh y + \sinh^3 x = 8 at the point (0, 2)
I firstly found the derivative and the gradient of the curve at point (0, 2)
3y^2 \cdot \frac{dy}{dx} + x \cosh y + x^2 \sinh y \cdot \frac{dy}{dx} + 3 \sinh^3 x \cosh x = 0
\Rightarrow \frac{dy}{dx} (3y^2 + x^2 \sinh y) = - x \cosh y - 3 \sinh^3 x \cosh x
\Rightarrow \frac{dy}{dx} = \frac{- x \cosh y - 3 \sinh^3 x \cosh x}{3y^2 + x^2 \sinh y}
Substitute x = 0\ \mbox{and}\ y = 2 into the equation and I get a gradient of 0 at point (0, 2).
\begin{align*}<br /> y - 2 = 0 (x - 0) \\<br /> \Rightarrow y = 2<br /> \end{align*}
Therefore, the equation of the tangent at point (0, 2) is y = 2
Last edited: