Hypergeometric function. Summation question

LagrangeEuler
Messages
711
Reaction score
22

Homework Statement


It is very well known that ## \sum^{\infty}_{n=0}x^n=\frac{1}{1-x}##. How to show that
## \sum^{\infty}_{n=0}\frac{(a)_n}{n!}x^n=\frac{1}{(1-x)^a}##
Where ##(a)_n=\frac{\Gamma(a+n)}{\Gamma(a)}##
[/B]

Homework Equations


## \Gamma(x)=\int^{\infty}_0 e^{-t}t^{x-1}dt##

The Attempt at a Solution


## \frac{(a)_n}{n!}=\frac{a(a+1)...(a+n-1)}{n!}##
Not sure how to go further.[/B]
 
Physics news on Phys.org
Let's call for ##\alpha < 0## : ##f_\alpha(x)= (1-x)^\alpha## and ## R_{n,\alpha}(x) = f_\alpha(x) - \sum_{k=0}^n \frac{f_\alpha ^ {(k)} (0)}{k!} x^k ##

Can you explain why ##|x| < 1 ## and ##x## in a neighborhood of 0 implies ##R_{n,\alpha}(x) = \int_0^x \frac{(x-t)^n}{n!} f_\alpha ^{(n+1)}(t) \ dt##. Then show that ##\lim_{n\to \infty} R_{n,\alpha}(x) = 0 ##
 
LagrangeEuler said:

Homework Statement


It is very well known that ## \sum^{\infty}_{n=0}x^n=\frac{1}{1-x}##. How to show that
## \sum^{\infty}_{n=0}\frac{(a)_n}{n!}x^n=\frac{1}{(1-x)^a}##
Where ##(a)_n=\frac{\Gamma(a+n)}{\Gamma(a)}##

[/B]

Homework Equations


## \Gamma(x)=\int^{\infty}_0 e^{-t}t^{x-1}dt##

The Attempt at a Solution


## \frac{(a)_n}{n!}=\frac{a(a+1)...(a+n-1)}{n!}##
Not sure how to go further.[/B]

Just evaluate and simplify the ##n##th term of the Maclaurin expansion of ##f(x) = (1-x)^{-a}##.

Basically, you are being asked to verify that the binomial expansion of ##(1-x)^n## applies to non-integer and/or negative values of ##n##. However, you cannot use the "factorial" definition of the binomial coefficient ##C^n_k## when ##n## is not a positive integer; instead, you need to use the explicit definition
C^n_k = \frac{n (n-1) \cdots (n-k+1)}{k!}
for integers ##k \geq 0##.
 
Thx a lot.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top