I need super help on a complex analysis problem.

dt666999
Messages
11
Reaction score
0

Homework Statement



Is there a Laurent Series for Log(z) in the Annulus 0<|z|<1?

Homework Equations



Go here for the Theorem. It is theorem 7.8:

www.math.fullerton.edu/mathews/c2003/LaurentSeriesMod.html[/URL]

(copy and paste the link below if you are having problems. Exclude the "[url]" in the link below):

[PLAIN]http://math.fullerton.edu/mathews/c2003/LaurentSeriesMod.html[url]

This whole section actually comes right out of my current textbook!

The Attempt at a Solution



From what is stated in the theorem I'm assuming yes because Log(z) is analytic for all z not equal to 0. So for any Annulus A(0,0,R), where R >0, a laurent series should exist.

I calculated a few coefficients out, but I'm not sure it is right for all n. I tried to google this situation to verify that my logic is right, but the only series I'm ever given is the maclaurin series of Log(1+z) which converges in the disk |z|<1.

Any help on this would be most apperciated it.

THanx.
 
Last edited by a moderator:
Physics news on Phys.org
dt666999 said:
Log(z) is analytic for all z not equal to 0.
No it isn't. It's not even continuous on the set of all nonzero z.
 
Hurkyl said:
No it isn't. It's not even continuous on the set of all nonzero z.

I forgot I was looking at the principal branch LOG function, which is not analytic on the negative real axis. Thanx anyways.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top