Image and kernel of iterated linear transformation intersect trivially

pugnet
Messages
2
Reaction score
0

Homework Statement


Given a linear transformation f:V -> V on a finite-dimensional vector space V, show that there is a postive integer m such that im(f^m) and ker(f^m) intersect trivially.


Homework Equations





The Attempt at a Solution


Observe that the image and kernel of a linear transformation f:V -> V are each subspaces of V.
The kernels of the successive iterations of the transformation form an increasing chain of subspaces.
The images of the successive iterations of the transformation form a decreasing chain of subspaces.
Since V is finite-dimensional, the chains of the kernels and images must eventually stabilize, say at m1 and m2 respectively. Let m be max{m1,m2}. So the kernel and image of the transformation are stable after m iterations.
Now let v be some element contained in both the image and the kernel of f^m.
This means that some element w in V with f^m(w) = v, and that f^m(v) = 0.

I need to obtain a contradiction, but I have been unsuccessful so far.

Thanks for your help.
 
Physics news on Phys.org
If the image is stabilized then f^m is a 1-1 map of Im(f^m)->Im(f^m). f^m(f^m(w))=f^m(v)=0. Seems like there is a contradiction there to me if you assume v is nonzero. What is it?
 
Last edited:
Thank you, Dick. I am kind of dumb, so it took me a while to see what you meant.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top