player1_1_1
- 112
- 0
Homework Statement
integral: \int\limits_0^\infty\frac{\mbox{d}x}{\left(x^2+1\right)\left(x^2+4\right)}
The Attempt at a Solution
normally i would do I=\frac12\int\limits_{-\infty}^\infty\frac{\mbox{d}x}{\left(x^2+1\right)\left(x^2+4\right)} and now count residues but is there any other thing what i can do without making it in x\in[-\infty,\infty]? what if i had \int\limits_a^\infty\frac{\mbox{d}x}{\left(x^2+1\right)\left(x^2+4\right)} where a is real, positive number?