Induced Current in Square Loop

AI Thread Summary
A square loop with a resistance of 0.12 Ω and dimensions of 21cm x 21cm is subject to a time-varying magnetic field described by B=4t−2t^2. At t=0.0s, the magnetic field is zero, leading to an initial current of 0 A, which is confirmed through calculations. To find the current at t=1.0s, Faraday's law of electromagnetic induction is applied, specifically using the equation V = -A*(dB/dt) and then V = IR to determine the current. The discussion emphasizes the correct application of these equations to solve for induced current in the loop. Understanding these principles is crucial for accurately determining the current at different time intervals.
qlzlahs
Messages
13
Reaction score
0

Homework Statement


A 21cm×21cm square loop has a resistance of 0.12 Ω . A magnetic field perpendicular to the loop is B=4t−2t^2, where B is in tesla and t is in seconds.
(A) What is the current in the loop at t=0.0s?
(B) What is the current in the loop at t=1.0s?

Homework Equations


for a square loop, B = (√2)(μ_0*I)/(π*R), where R is the length of the side

The Attempt at a Solution


(A) I assumed that at t = 0, B = 4(0) - 2(0^2) = 0.
0 = (√2)(μ_0*I)/(π*.21), but that means I = 0 A and that didn't work.
Help please? Thanks.
 
Physics news on Phys.org
You must use Faraday's law of electromagnetic induction.
 
  • Like
Likes qlzlahs
cnh1995 said:
You must use Faraday's law of electromagnetic induction.

So I use V = -A*(dB/dt), then use V = IR to find the current?
 
qlzlahs said:
So I use V = -A*(dB/dt), then use V = IR to find the current?
Correct..
 
  • Like
Likes qlzlahs
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top