Inelastic Collision in Two Dimensions

AI Thread Summary
A 1300-kg car collides with a 15,000-kg truck, resulting in an inelastic collision where they move together, leaving a 5m skid mark at a 30° angle. The force of impact equals the force of friction, calculated to be 111818 N, leading to a deceleration of 6.86 m/s². Using kinematic equations, the initial velocity of the system was found to be 8.28 m/s, but the calculated initial velocity of the car at 89.7 m/s raised concerns about its plausibility. Discussions suggested alternative methods, such as the work-energy theorem, to verify results. The forum participants confirmed the calculations while acknowledging minor rounding differences, emphasizing the value of collaborative problem-solving.
jaankney
Messages
2
Reaction score
0

Homework Statement


A 1300-kg car collides with a 15,000-kg truck at an intersection and they couple together and move off as one leaving a skid mark 5m long that makes an angle of 30.0° with the original direction of the car. If μk = 0.700, find the initial velocities of the car and truck before the collision.
Note: The car is traveling east and the truck is traveling north.

Homework Equations


FIMPACT=FFRICTION
F = μ * m * g
F = m * a
v2=v02 + 2 * a * x
x component of momentum: (m1 + m2) * Vf * cos θ = m1 * v1i
y component of momentum: (m1 + m2) * Vf * cos θ = m2 * v2i

The Attempt at a Solution


The force at impact equals the force of friction: F = (0.700)(16300 kg)(9.8 m/s^2) = 111818 N
Find deceleration of the system: a = 111818 N / 16300 kg = 6.86 m/s^2
Use kinematic equation to find v0: 0 = v02 + (2)(6.86 m/s^2)(5 m); v0 = 8.28 m/s
x component: (16300 kg)(8.28 m/s^2)(cos 30°) = 1300 * v1i; v1i = 89.7 m/s
y component: (16300 kg)(8.28 m/s^2)(sin 30°) = 15000 * v2i; v2i = 4.49 m/s

Obviously the initial velocity for the car is outlandish at 89.7 m/s. I've tried a couple of other equations and I keep getting this same answer. I think the problem is that I am assuming that Vf = v0. When I use tan θ = (m2 * v2i) / (m1 * v1i) I get v2i / v1i = 0.05. If the speed of the car gets much lower the truck will hardly be moving so I am baffled.

Should I try calculating Vf by figuring out the kinetic energy instead?
 
Physics news on Phys.org
Hello jaankney,

Welcome to Physics Forums!

jaankney said:

The Attempt at a Solution


The force at impact equals the force of friction: F = (0.700)(16300 kg)(9.8 m/s^2) = 111818 N
Find deceleration of the system: a = 111818 N / 16300 kg = 6.86 m/s^2
Use kinematic equation to find v0: 0 = v02 + (2)(6.86 m/s^2)(5 m); v0 = 8.28 m/s
There's a slightly easier way to get the magnitude of the velocity after the collision by using the work-energy theorem, and W = \vec F \cdot \vec s (for a constant force \vec F). But you get the same answer either way. The way you did it is fine too. :approve: I just though thought I'd point it out for future problems.
x component: (16300 kg)(8.28 m/s^2)(cos 30°) = 1300 * v1i; v1i = 89.7 m/s
y component: (16300 kg)(8.28 m/s^2)(sin 30°) = 15000 * v2i; v2i = 4.49 m/s
'Looks about right to me. :approve: There's some very minor rounding differences compared to the answer that I got, but the differences are minor.
 
Thanks for the response and the suggestion for future problems! I just assumed I did the problem wrong because the velocity was so high. I find these forums really helpful for finding good ways of thinking about problems but this was obviously my first post. Thanks again!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top