Inelastic collision Two angles and final velocities

AI Thread Summary
The discussion centers on solving an inelastic collision problem involving two blocks, M1 and M2, with given masses and initial velocities. The user is attempting to apply conservation of momentum and energy principles but is struggling with the correct setup for the equations, particularly in separating the momentum into x and y components. Clarifications are provided regarding the need for two distinct momentum conservation equations for each direction, as momentum is a vector quantity. The user acknowledges confusion over the initial conditions and seeks guidance on properly structuring the equations to find the final velocities and angles post-collision. The conversation emphasizes the importance of understanding vector components in momentum conservation for solving inelastic collision problems.
-PhysicsMajor-
Messages
2
Reaction score
0

Homework Statement


Consider an inelastic collision between two blocks on a horizontal plane. Block M1 is moving with velocity Vo and collides with block M2 which is at rest. During the collision a fraction Q of the original kinetic energy is lost. It is observed that M1 is deflected by an angle theta (above the x axis), and M2 is deflected at an angle phi (below the x axis). After the collision M1 is moving to the right.

Find the angle phi, and the final velocities of the blocks.

M1=2kg
M2=4kg
Vo=10m/sec
Theta=30o
Q=.2

Homework Equations


Inital Momentum = Final Momentum (M1iVo+M2iVo =M1fVf+M2fVf)

KEf = (1-Q)KEi

*I'm sure there are more but this is what I have from class.

The Attempt at a Solution



Finding the final KE was easy enough using the above equation: KE inital =100 KE final =80

Then I tried to split them up in the x and y components. They both start with zero in the y direction and only M1 has initial momentum in the x direction. In the Y direction after the impact I got some sin and cos directions
So M1iVo = M1V1fCos(theta)+M2V2fcos(phi)+M1V1f-M2V2fsin(phi) (negative because it is below the x axis)
If that is right (big if) I have no clue where to go from here. I really don't know how to turn the final kinetic energy into two different objects and I REALLY don't know how to find that phi angle. I'm at a complete loss.

This is my first post here so hopefully formatted the question correctly. This stuff is really stressing me out. Every time I think that I've stumbled upon something useful online, it just seems way to simple, which is pretty much a guarantee that it can't help me. Our homework consists of just a few problems over the course of a week, and when he shows examples in class my professor fills several chalkboards full of calculations. So anything that is a quick answer must be wrong.

I don't want the answer, I just need a nudge in the right direction of how to even set up the problem. I have not found a single thing online that can help with these intermediate inelastic collisions with two objects of a different mass.

This forum is my last hope.

*Way too many words, not nearly enough physics. Sorry
 

Attachments

  • collisionproblem.jpg
    collisionproblem.jpg
    5.1 KB · Views: 514
Physics news on Phys.org
-PhysicsMajor- said:
So M1iVo = M1V1fCos(theta)+M2V2fcos(phi)+M1V1f-M2V2fsin(phi)
you seem to have a basic misapprehension regarding momentum.
Momentum is a vector, and your 'relevant equation' for its conservation should be interpreted in that light.
When resolving into separate X and Y directions, that gives you two momentum conservation equations, one for each direction. But you appear to have collapsed them into one scalar equation.
 
haruspex said:
you seem to have a basic misapprehension regarding momentum.
Momentum is a vector, and your 'relevant equation' for its conservation should be interpreted in that light.
When resolving into separate X and Y directions, that gives you two momentum conservation equations, one for each direction. But you appear to have collapsed them into one scalar equation.
Thank you for bringing this up, because it seemed wrong when I was doing it. I guess I just got confused because there is no inital momentum in the y direction.

So
Pix=Pfx = M1iVo = M1V1fCos(theta)+M2V2fcos(phi)
Piy = Pfy = 0 = M1V1fsin(theta)-M2V2fsin(phi)

??
 
-PhysicsMajor- said:
Thank you for bringing this up, because it seemed wrong when I was doing it. I guess I just got confused because there is no inital momentum in the y direction.

So
Pix=Pfx = M1iVo = M1V1fCos(theta)+M2V2fcos(phi)
Piy = Pfy = 0 = M1V1fsin(theta)-M2V2fsin(phi)

??
Yes.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top