Inequality with Differentiation

steelphantom
Messages
158
Reaction score
0

Homework Statement


Let p > 1, and put q = p/(p-1), so 1/p + 1/q = 1. Show that for any x > 0, y > 0, we have

xy <= xp/p + yq/q, and find the case where equality holds.

Homework Equations



The Attempt at a Solution


This is in the differentiation chapter of my analysis book (Browder), so I'm going to go out on a limb here and assume that some aspect of differentiation comes into play here. Unfortunately, I don't really know how to start. Could someone get me started here? Thanks!
 
Physics news on Phys.org
Maybe try to find the minimum possible value of f(x,y)=x^p/p + y^q/q -xy
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top