Proving Existence of Series with Nondecreasing Sequence and Nonnegative Terms

happyg1
Messages
304
Reaction score
0
Hi,
I'm working on this problem:
If {s_n} is a nondecreasing sequence and s_n>=0, prove that there exists a series SUM a_k with a_k>=0 and s_n = a_1 + a_2 + a_3 + ...+ a_n.
I'm not sure where to start. I wrote out the sequence's terms:
s_n = (s_1, s_2, s_3, ...s_n)
Then I wrote;
s_1=a_1
s_2=a_1+a_2
.
.
s_n=a_1+a_2+...a_n
I'm unclear about exactly what I need to go for.
Any clarifiction will be greatly appreciated.
CC
 
Physics news on Phys.org
Try to write the a's in terms of the s's. You've already got a_1=s_1. What must a_2 be? a_3? a_4? a_n?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top