Infinte sum - standard result?

  • Thread starter Thread starter yaboidjaf
  • Start date Start date
  • Tags Tags
    Standard Sum
yaboidjaf
Messages
5
Reaction score
0
Hi, I'm working on a continuous time random walk problem, but my question is to do with analysis.
I have and infinite sum and am unsure how to get form one step to the next or whether it is just a standard result.
The variables aren't important but it looks like

sum from n=0 to inf of (p^n((1-p)/s)(cos(ka))^n) = ((1-p)/s)(1/(1-pcos(ka))

sorry it looks messy but i was struggling with the latex.
Is this a standard result or is there a trick I can apply?
Thanks
 
Physics news on Phys.org
brilliant, thanks a lot!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top