0131413
- 10
- 0
Homework Statement
What is the value of a such that the solution of the initial-value problem satisfies limx->infinity y(x) = 0?
y''+y'=e^(-x), y(0)=1, y'(0)=a
Homework Equations
The Attempt at a Solution
Not sure what to do with the missing y term...
yp=Ae^(-x), y'p=-A^(-x), y''p=A^(-x)
Ae^(-x)-A^(-x) = 0 so
yp=Axe^(-x), y'p=-Axe^(-x)+Ae^(-x). y''p=Axe^(-x)-Ae^(-x)-Ae^(-x)
Axe^(-x)-Ae^(-x)-Ae^(-x)-Axe^(-x)+Ae^(-x)=e^(-x)
-Ae^(-x)=e^(-x)
A=-1
The general solution is C1e^(0)+C2e^(-x) (?)
y=te^(-x)+C1e^(0)+C2e^(-x)
y'=-te^(-x)+e^(-x)-C2e^(-x)
y(0)=0+C1-C2=1
y'(0)=0+1-C2=a
C2=1-a
I know this is wrong, multiple numbers can fit into a. Thanks!