Initial conditions for stability

hbomb
Messages
57
Reaction score
0
The general solution fo the following equations:

x'=2x-3y
y'=x-2y

Is, x=4C1e^2t, y=C1e^2t-3C2e^-2t

They ask for me to list a set of initial conditions (xo, yo) for which the solution is stable, i.e, (x, y)-->(0,0) for large t.

I don't understand this part of the problem.
 
Physics news on Phys.org
Basically, for what constants C1 and C2 do x and y go to infinity as t gets large? From that, solve for what x(0) and y(0) can be
 
Ok, I understand that for the general solution, the only unstable part of it is e^-2t. What does the setup of the solution look like?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top