Initial Mass Function physics problem

AI Thread Summary
The discussion centers around understanding the initial mass function (IMF) in astrophysics, specifically for a globular cluster with a given IMF equation and total mass. The participants clarify that the units involved are solar masses, with a minimum and maximum stellar mass range provided. To find the constant 'a' in the IMF equation, integration of the mass distribution is necessary, leading to a formula that relates 'a' to the total mass of the cluster. The logic behind including mass in the integral is explained as a means to calculate the total mass from the number distribution of stars. Overall, the conversation emphasizes the importance of understanding distribution functions in astrophysical contexts.
cluckaluck
Messages
2
Reaction score
0
Hello, I am having a lot of trouble understanding exactly what the initial mass function is.
I have a problem in which I am given the IMF for a globular cluster of stars, dN/dm=am^(-2.35) and the total mass of the cluster, 10^6 solar masses, and asked to find the constant a. Could someone help me with this as well as describe what units are involved with IMF's and integrating them? Thank you so much.
 
Astronomy news on Phys.org
Hi

Well units is easy because you've already used "solar masses" - which is the mass of the Sun. The minimum stellar mass is ~0.08 solar masses and the maximum is ~150 solar masses, at least for current metallicity levels.

Now total number for a given IMF is a bit trickier. You know the number distribution for a given mass range - that's the IMF - and you integrate that for the total number. In the range I gave it's then Q = (30.256/1.35)*a/(Msol^1.35), which doesn't readily translate into a number, but allows you to work out relative numbers in different mass ranges.

But notice the ratio a/(Msol^1.35.) If we take Msol to be 1, then for a given number of stars, Q, working out a is obvious, a = Q/22.4.

Let's find the total mass. The integral becomes a*S [the integral 'long S'] M*M^(-2.35) dM, thus total mass of stars, m, across the previous mass range is (2.24/0.35)*a/(Msol^0.35), or (6.42*a) solar masses. Thus a is 1,000,000/6.42 (Msol^1.35) for the example you give. Note the unit.
 
Thanks for your help. I understand almost all it, but I not how you found the total mass. Why did you insert another M into the integral? It comes out to the right answer, but I don't understand the logic behind it. Thanks again.
 
Hi cluckaluck

Isn't it obvious? The distribution function tells you how many objects of a given mass, so you multiply by that mass to get how much mass there is. Think about it. Took me a while, but it made sense eventually. I had to read a text about distribution functions to really understand what was going on.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top