coverband
- 170
- 1
1. By considering, seperately, each component of the vector A, show that \iint A(u.n) ds = \iiint {(u.\nabla)A + A(\nabla.u)} dV (A,u and n are vectors)
3. Attempt at solution
L.H.S.
Let A = a\vec{i} + b\vec{j} + c\vec{k}
<br /> \iint (a\vec{i} + b\vec{j} + c\vec{k})[(u_1\vec{i} + u_2 \vec{j} + u_3 \vec{k}).(n_1 \vec{i} + n_2 \vec {j} + n_3 \vec{k})] ds<br /> <br /> = \iint (a\vec{i} + b\vec{j} + c\vec{k})(u_1 n_1 + u_2 n_2 + u_3 n_3) ds<br /> <br /> = \iint au_1n_1\vec{i} + au_2n_2\vec{i} + au_3n_3\vec{i} + bu_1n_1\vec{j}<br /> + bu_2n_2\vec{j} + bu_3n_3\vec{j} + cu_1n_1\vec{k} + cu_2n_2\vec{k} + cu_3n_3\vec{k} ds
R.H.S.<br /> \iiint(u_1a_x\vec{i}+u_1b_x\vec{j}+u_1c_x\vec{k}+u_2a_y\vec{i}+u_2b_y\vec{j}+u_2c_y\vec{k}+u_3a_z\vec{i}+u_3b_z\vec{j}+u_3c_z\vec{k}+u_1a_x\vec{i}+u_1b_y\vec{i}+u_1c_z\vec{i}+u_2a_x\vec{j}+u_2b_y\vec{j}+u_2c_z\vec{j}+u_3a_x\vec{k}+u_3b_y\vec{k}+u_3c_z\vec{k})dv
Is this right? Where to now? Thanks
Homework Equations
3. Attempt at solution
L.H.S.
Let A = a\vec{i} + b\vec{j} + c\vec{k}
<br /> \iint (a\vec{i} + b\vec{j} + c\vec{k})[(u_1\vec{i} + u_2 \vec{j} + u_3 \vec{k}).(n_1 \vec{i} + n_2 \vec {j} + n_3 \vec{k})] ds<br /> <br /> = \iint (a\vec{i} + b\vec{j} + c\vec{k})(u_1 n_1 + u_2 n_2 + u_3 n_3) ds<br /> <br /> = \iint au_1n_1\vec{i} + au_2n_2\vec{i} + au_3n_3\vec{i} + bu_1n_1\vec{j}<br /> + bu_2n_2\vec{j} + bu_3n_3\vec{j} + cu_1n_1\vec{k} + cu_2n_2\vec{k} + cu_3n_3\vec{k} ds
R.H.S.<br /> \iiint(u_1a_x\vec{i}+u_1b_x\vec{j}+u_1c_x\vec{k}+u_2a_y\vec{i}+u_2b_y\vec{j}+u_2c_y\vec{k}+u_3a_z\vec{i}+u_3b_z\vec{j}+u_3c_z\vec{k}+u_1a_x\vec{i}+u_1b_y\vec{i}+u_1c_z\vec{i}+u_2a_x\vec{j}+u_2b_y\vec{j}+u_2c_z\vec{j}+u_3a_x\vec{k}+u_3b_y\vec{k}+u_3c_z\vec{k})dv
Is this right? Where to now? Thanks
Last edited: