Ted123
- 428
- 0
If q>p>-1 and w=\cosh(x) then how do I get smoothly from: \displaystyle \int^{\infty}_1 \sinh^{p-1}(x) w^{-q} \;dw to \displaystyle \int^{\infty}_1 (w^2-1)^{\frac{p-1}{2}} w^{-q}\;dw and if t=w^{-2} how do I get smoothly from this to: \displaystyle \frac{1}{2} \int^{\infty}_0 t^{\frac{p+1}{2}-1} (1-t)^{\frac{q-p}{2}-1}\;dt