phyzmatix
- 313
- 0
Homework Statement
Determine
\int\frac{4x^{2}-2x+2}{4x^{2}-4x+3}dx
Homework Equations
I believe it's necessary to complete the square.
The Attempt at a Solution
Completing the square for
4x^{2}-4x+3
gives
\int\frac{4x^{2}-2x+2}{(x-\frac{1}{2})^2+\frac{1}{2}}dx
let
u=x-\frac{1}{2}, du = dx, x=u+\frac{1}{2}
then
\int\frac{4(u+\frac{1}{2})^{2}-2(u+\frac{1}{2})+2}{u^2+\frac{1}{2}}du
=\int\frac{4u^2+4u+1-2u-1+2}{u^2+\frac{1}{2}}du
=\int\frac{4u^2+2u+2}{u^2+\frac{1}{2}}du
=\int\frac{4(u^2+\frac{1}{2})}{u^2+\frac{1}{2}}+\int\frac{2u}{u^2+\frac{1}{2}}du
=4u + \ln|u^2+\frac{1}{2}|+c
Substituting back
\int\frac{4x^{2}-2x+2}{4x^{2}-4x+3}dx=4(x-\frac{1}{2})+\ln|(x-\frac{1}{2})^2+\frac{1}{2})|+c
=4(x-\frac{1}{2})+\ln|4x^{2}-4x+3|+c
Would someone be so kind as to tell me if this is correct? For this question, I have 4 possible answers (and one that states "None of the above") and my answer doesn't match any of the other 3, so I'm wondering.
Thanks!
phyz