Integral on Sequence: Proving Summation Equation

  • Thread starter Thread starter burak100
  • Start date Start date
  • Tags Tags
    Integral Sequence
burak100
Messages
33
Reaction score
0

Homework Statement


show that holds,

\sum\limits_{n=1}^{\infty}\int\limits_{0}^{\frac{\pi}{2}}\frac{(2n-1) sin(2n-1) x}{n^2(n+1)}dx = \sum\limits_{n=2}^{\infty}\frac{1}{n^2}

Homework Equations





The Attempt at a Solution



Actually, I have no idea how should I start.
 
Physics news on Phys.org
This reduces to

\sum_{n=1}^{+\infty}{\frac{2n-1}{n^2(n+1)}\int_0^{\pi/2}{\sin((2n-1)x)dx}}

Now, calculate the integral.
 
thank you very much for your help, I calculate the integral;

= \sum\limits_{n=1}^{\infty}\frac{(2n-1)}{n^2(n+1)}\Big( \frac{-1}{(2n-1)} \cos((2n-1)x) \vert_{0}^{\frac{\Pi}{2}} \Big)

= \sum\limits_{n=1}^{\infty}\frac{-1}{n^2(n+1)} \Big( cos((2n-1)\frac{\Pi}{2}) -1 \Big)

= \sum\limits_{n=1}^{\infty} \frac{1- cos((2n-1)\frac{\Pi}{2}) }{n^2(n+1)}

for n=1, this summation becomes \frac{1}{2}

so,

\frac{1}{2} +\sum\limits_{n=2}^{\infty} \frac{1- cos((2n-1)\frac{\Pi}{2}) }{n^2(n+1)}

it becomes like that. but here how should I continue to show that this equation equal to

\sum\limits_{n=2}^{\infty} \frac{1}{n^2}

??
 
burak100 said:
thank you very much for your help, I calculate the integral;

= \sum\limits_{n=1}^{\infty}\frac{(2n-1)}{n^2(n+1)}\Big( \frac{-1}{(2n-1)} \cos((2n-1)x) \vert_{0}^{\frac{\Pi}{2}} \Big)

= \sum\limits_{n=1}^{\infty}\frac{-1}{n^2(n+1)} \Big( cos((2n-1)\frac{\Pi}{2}) -1 \Big)

= \sum\limits_{n=1}^{\infty} \frac{1- cos((2n-1)\frac{\Pi}{2}) }{n^2(n+1)}

OK, but \cos((2n-1)\pi/2) can be calculated, right??

for n=1, this summation becomes \frac{1}{2}

so,

\frac{1}{2} + \frac{1- cos((2n-1)\frac{\Pi}{2}) }{n^2(n+1)}

it becomes like that. but here how should I continue to show that this equation equal to

\sum\limits_{n=2}^{\infty} \frac{1}{n^2}

??

I have no idea why you drop the summation here...
 
Ok if I rewrite it, finally it becomes
\frac{}{}
\[=\sum\limits_{n=1}^{\infty}\frac{1- \cos((2n-1)\frac{\Pi}{2})}{n^2(n+1)}\]
\[=\sum\limits_{n=1}^{\infty}\frac{1- \cos(n \Pi - \frac{\Pi}{2})}{n^2(n+1)}\]
\[=\sum\limits_{n=1}^{\infty}\frac{1- \Big(\cos(n\Pi)\cos(\frac{\Pi}{2}) + \sin(n\Pi)\sin(\frac{\Pi}{2})\Big)}{n^2(n+1)}\]
\[=\sum\limits_{n=1}^{\infty}\frac{1}{n^2(n+1)}\]

actually I can't go on ..

how it is equal to
\[=\sum\limits_{n=2}^{\infty}\frac{1}{n^2}\]
?
 
OK, now split

\frac{1}{n^2(n+1)}

into partial fractions...
 
ok now I think we found, can you check,

=\sum\limits_{n=1}^{\infty}\frac{1}{n^2(n+1)}
=\sum\limits_{n=1}^{\infty}\frac{1}{n^2} - \sum\limits_{n=1}^{\infty}\frac{1}{n(n+1)}
=\sum\limits_{n=1}^{\infty}\frac{1}{n^2} - \Big( \sum\limits_{n=1}^{\infty}\frac{1}{n}- \sum\limits_{n=1}^{\infty}\frac{1}{(n+1)} \Big)
=\sum\limits_{n=1}^{\infty}\frac{1}{n^2} - 1
=\sum\limits_{n=2}^{\infty}\frac{1}{n^2}

thank you very much...
 
burak100 said:
=\sum\limits_{n=1}^{\infty}\frac{1}{n^2} - \Big( \sum\limits_{n=1}^{\infty}\frac{1}{n}- \sum\limits_{n=1}^{\infty}\frac{1}{(n+1)} \Big)

Nonono, you can't write that. \sum_{n=1}^{+\infty}{\frac{1}{n}} is infinity. So what's standing there is infinity - infinity. This doesn't make any sense.

You'll need another way to calculate

\sum_{n=1}^{+\infty}{\frac{1}{n}-\frac{1}{n+1}}

Write out the first 10 terms of the sum and see if you notice anything...
 
=\sum\limits_{n=1}^{\infty}\frac{1}{n(n+1)}
=\sum\limits_{n=1}^{\infty}\Big( \frac{1}{n} - \frac{1}{n+1} \Big)
= \Big( \frac{1}{1} - \frac{1}{2} \Big)
~~+ \Big( \frac{1}{2} - \frac{1}{3} \Big)
~~+ \Big( \frac{1}{3} - \frac{1}{4} \Big)
~~+ \Big( \frac{1}{4} - \frac{1}{5} \Big)
...
and so on,
then it is equal to 1
..
 
  • #10
Yes, that is the correct reasoning!
 
  • #11
Thank you very much..
 
Back
Top