Integral Prove: $\frac {n}{n^{2} - 1}$ for $n > 1$

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion centers on proving the integral $$\int^{\infty}_{0}\frac {dx}{\left(x + \sqrt {1 + x^{2}}\right)^{n}}$$ for $$n > 1$$ and its equivalence to $$\frac {n}{n^{2} - 1}$$. The context is mathematical reasoning related to integral calculus, specifically within a contest setting.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Multiple participants present the same integral and its proposed result, indicating a focus on proving this relationship.

Areas of Agreement / Disagreement

Participants appear to agree on the statement of the integral and the proposed result, but no proof or further discussion has been provided to explore the validity of the claim.

Contextual Notes

The discussion lacks detailed exploration of the proof steps or any assumptions that may be necessary for the integral's evaluation.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove that for $$n >1$$ we have

$$\int^{\infty}_{0}\frac {dx}{\left(x + \sqrt {1 + x^{2}}\right)^{n}} = \frac {n}{n^{2} - 1}$$​

This appeared in the Bee integration contest.
 
Physics news on Phys.org
$ \displaystyle \int_{0}^{\infty} \frac{1}{(x+\sqrt{1+x^{2}})^{n}} \ dx $Let $u = \sinh x $.$ \displaystyle = \int_{0}^{1} \frac{1}{(\sinh x + \cosh x)^{n}} \ \cosh x \ dx = \int_{0}^{\infty} e^{-nx} \cosh x \ dx $

$ \displaystyle = \frac{1}{2} \int_{0}^{\infty} e^{-(n-1)x} \ dx + \frac{1}{2} \int_{0}^{\infty} e^{-(n+1)x} \ dx $

$ \displaystyle = \frac{1}{2} \frac{1}{n-1} + \frac{1}{2} \frac{1}{n+1} = \frac{n}{n^{2}-1} $
 
ZaidAlyafey said:
Prove that for $$n >1$$ we have

$$\int^{\infty}_{0}\frac {dx}{\left(x + \sqrt {1 + x^{2}}\right)^{n}} = \frac {n}{n^{2} - 1}$$​

This appeared in the Bee integration contest.
Setting $\displaystyle x = \sinh t$ the integral becomes...

$\displaystyle I = \int_{0}^{\infty} \frac{\cosh t}{(\sinh t + \cosh t)^{n}}\ dt\ (1)$ ... and because is...

$\displaystyle \int \frac{\cosh t}{(\sinh t + \cosh t)^{n}}\ dt = - \frac{(\sinh t + \cosh t)^{- n}\ (n \ \cosh t + \sinh t)}{n^{2}-1}\ (2)$

... the result is immediate...

Kind regards

$\chi$ $\sigma$
 
ZaidAlyafey said:
Prove that for $$n >1$$ we have

$$\int^{\infty}_{0}\frac {dx}{\left(x + \sqrt {1 + x^{2}}\right)^{n}} = \frac {n}{n^{2} - 1}$$​

This appeared in the Bee integration contest.

Hello again! :)

Use the substitution $x+\sqrt{1+x^2}=e^t$. A bit of simplification gives $\displaystyle x=\frac{e^t-e^{-t}}{2} \Rightarrow dx=\frac{e^t+e^{-t}}{2}dt$

Hence, the integral is

$$\int_0^{\infty} \frac{e^t+e^{-t}}{2e^{nt}}dt$$

$$=\frac{1}{2}\int_0^{\infty}\left( e^{-t(n-1)}+e^{-(n+1)}\right)dt$$
Its easy to solve the above integral so I skip the steps. Solving the integral gives:

$$\frac{1}{2}\left(\frac{1}{n+1}+\frac{1}{n-1}\right)=\frac{n}{n^2-1}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K