John O' Meara
- 325
- 0
Given that \int_{0}^{\infty} \exp{-x^2}dx =\frac{\sqrt{\pi}}{2} \\ \ \mbox{ show that } \ \int_0^{\infty} x^4 \exp{-x^2} dx= \frac{3\sqrt{\pi}}{8} \\. From the kinetic Theory the root mean square velocity of the molecules (\overline{v^2})^{\frac{1}{2}} is the square root of the integral 4\pi \frac{m}{2\pi kT} \int_0 ^{\infty} \exp{\frac{-mv^2}{2kT}}v^4 dv, where k is Boltzmann constant. T is the absolute temperature, m the mass of each molecule and v the speed of any molecule. Using the substitution x^2=\frac{mv^2}{2kT} \\ \ \mbox{ show that (\overline{v^2})^\frac{1}{2} = (\frac{3kT}{m})^\frac{1}{2} \\ Using integration by parts I get the following:<br />
\int x^4\exp{-x^2}dx =\lim_{x\rightarrow \infty} x^4|\frac{\sqrt{\pi}}{2} - \lim_{X\rightarrow \infty}\int 4x^3 dx \\ \ \mbox{ which does not give} \ 3\frac{\sqrt{\pi}}{8}. Any help would be welcome.<br />
<h2>Homework Statement </h2><br />
<h2>Homework Equations</h2><br />
<h2>The Attempt at a Solution</h2>
Last edited: