Integral Question: Swapping X and Y

  • Thread starter Thread starter ehrenfest
  • Start date Start date
  • Tags Tags
    Integral
ehrenfest
Messages
2,001
Reaction score
1

Homework Statement


Can someone explain to me the logic of this statement:

"Since the value of f (x, y) is unchanged when we swap x with y,

\int_0^1 \int_0^x f (x+y)dydx = 1/2 \int_0^1 \int_0^1 f (x+y)dydx."

Homework Equations





The Attempt at a Solution



\int_0^1 \int_0^x f (x+y)dydx = \int_0^1 \int_0^y f (y+x)dxdy

But I do not think that is the same.
 
Physics news on Phys.org
Draw a picture of the region of integration. It's one half of the unit square. What is the integral over the other half equal to if f(x,y)=f(y,x)?
 
That makes sense. :biggrin:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top