phyzmatix
- 313
- 0
Homework Statement
Use trigonometric substitution to evaluate
\int{\frac{x^2}{\sqrt{9-x^2}}}dx
The Attempt at a Solution
Let x=3\sin\theta
then dx=3\cos\theta d\theta
\int{\frac{x^2}{\sqrt{9-x^2}}}dx
=\int{\frac{9\sin^2\theta}{3\sqrt{1-\sin^2\theta}}}\ 3\cos\theta \ d\theta
=\int{\frac{9\sin^2\theta}{3\sqrt{\cos^2\theta}}}\ 3\cos\theta \ d\theta
=\int{9\sin^2\theta \ d\theta}
=\frac{9}{2} \int{(1-\cos2\theta)}\ d\theta
let w=2\theta
then dw=2\ d\theta
=\frac{9}{4} \int{(1-\cos w)}\ dw
=\frac{9}{4}[w-\sin w] + c \ \mbox{(substituting everything back in)}
=\frac{9}{4}[2\sin^{-1}(\frac{x}{3})-\sin(2\sin^{-1}(\frac{x}{3})]+c
Is this correct so far? And if so, now what?
I'm stumped

Thanks!
phyz