Integrals Analysis: Solving ∫ [-2pi,2pi] (x^2)(sin(e^x))^8 dx

gutnedawg
Messages
34
Reaction score
0

Homework Statement


∫ [-2pi,2pi] (x^2)(sin(e^x))^8 dx <= (16pi^3)/3


Homework Equations





The Attempt at a Solution



I know that the function is almost 0 when x<0 I'm just not sure how to show this mathematically
 
Physics news on Phys.org
how about considering the simpler integral first
\int_{-2 \pi}^{2 pi} dx (x^2)
 
lanedance said:
how about considering the simpler integral first
\int_{-2 \pi}^{2 pi} dx (x^2)

thanks I was able to figure this out not too long ago.

I just say that x^2 >= the other function and thus ∫ f(x) >= ∫ g(x) on [a,b]
since ∫ x^2 [-2pi,2pi] is equal to (16pi^3)/3 and ∫ f(x) >= ∫ g(x) the inequality holds

thanks though
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top