snowJT
- 117
- 0
Homework Statement
Obtain the general solution of 2xydy - 6y^2dy + 8xdx + y^2dx = 0
2. The attempt at a solution
2xydy - 6y^2dy + 8xdx + y^2dx = 0
2xydy + y^2dx = 6y^2dy - 8xdx
\intd(xy^2) = \int6y^2dy - 8xdx
xy^2 = \frac{6y^3}{3} - \frac{8x^2}{2}+C
xy^2 = 2y^3 - 4x^2+C
3. Homework Statement
Find the particular solution of the DE that satisfies the condition y = 5 when x = 1
4. The attempt at a solution
xy^2 = 2y^3 - 4x^2+C
(5)^2 = 2(5)^3 - 4+C
25 = 250 - 4+C
C = -221
Does all of this look right to you? I'm not so sure about the last part?