Integrate \frac{1}{t^3 \sqrt{t^2 - 1}} from \sqrt{2} to 2

  • Thread starter Thread starter DivGradCurl
  • Start date Start date
  • Tags Tags
    Integration
AI Thread Summary
The integral of \(\frac{1}{t^3 \sqrt{t^2 - 1}}\) from \(\sqrt{2}\) to \(2\) is evaluated using the trigonometric substitution \(t = \sec \theta\). The transformation leads to a new integral that simplifies to \(\int \cos^2 \theta \, d\theta\), which can be further broken down using the identity for \(\cos^2 \theta\). After correcting the limits of integration, the final result confirms that the integral equals \(\frac{1}{24}(-6 + 3\sqrt{3} + \pi)\). The discussion highlights the importance of careful substitution and integration techniques.
DivGradCurl
Messages
364
Reaction score
0
Show that

\int _{\sqrt{2}} ^2 \frac{1}{t^3 \sqrt{t^2 - 1}} \: dt = \frac{1}{24}\left( -6 + 3\sqrt{3} + \pi \right)

I've tried to use the trigonometric substitution t=\sec \theta, but without success thus far.

t=\sec \theta \Rightarrow \frac{dt}{d\theta}=\sec \theta \tan \theta \Rightarrow dt = \sec \theta \tan \theta \: d\theta

\int _{\sqrt{2}} ^{2} \frac{1}{t^3 \sqrt{t^2 - 1}} \: dt=\int _{\sec \sqrt{2}} ^{\sec 2} \frac{\sec \theta \tan \theta}{\sec ^3 \theta \sqrt{\sec ^2 \theta - 1}} \: d\theta

\int _{\sec \sqrt{2}} ^{\sec 2} \frac{\sec \theta \tan \theta}{\sec ^3 \theta \sqrt{\sec ^2 \theta - 1}} \: d\theta = \int _{\sec \sqrt{2}} ^{\sec 2} \frac{\tan \theta}{\sec ^2 \theta \sqrt{\tan ^2 \theta}} \: d\theta

\int _{\sec \sqrt{2}} ^{\sec 2} \frac{\tan \theta}{\sec ^2 \theta \sqrt{\tan ^2}} \: d\theta = \int _{\sec \sqrt{2}} ^{\sec 2} \frac{d\theta}{\sec ^2 \theta} = \int _{\sec \sqrt{2}} ^{\sec 2} \cos ^2 \theta \: d\theta

\int _{\sec \sqrt{2}} ^{\sec 2} \cos ^2 \theta \: d\theta = \frac{1}{2} \int _{\sec \sqrt{2}} ^{\sec 2} (1+\cos 2\theta) \: d\theta = \frac{1}{2} \int _{\sec \sqrt{2}} ^{\sec 2} \: d\theta + \frac{1}{2} \int _{\sec \sqrt{2}} ^{\sec 2} \cos 2\theta \: d\theta

Consider the following

\int \cos 2x \: dx

u=2x \Rightarrow \frac{du}{dx}= 2 \Rightarrow dx = \frac{du}{2}

\int \cos 2x \: dx = \frac{1}{2} \int \cos u \: du = \frac{1}{2} \sin u + \mathrm{C} = \frac{1}{2} \sin 2x + \mathrm{C} = \sin x \cos x + \mathrm{C}

Then, we get

\frac{1}{2} \int _{\sec \sqrt{2}} ^{\sec 2} \: d\theta + \frac{1}{2} \int _{\sec \sqrt{2}} ^{\sec 2} \cos 2\theta \: d\theta = \left. \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta \right] _{\sec \sqrt{2}} ^{\sec 2}

which is wrong.

Any help is highly appreciated.
 
Physics news on Phys.org
Of course,the limits of integration are incorrect.

t=2\Rightarrow \theta=\mbox{arcsec} \ 2

t=\sqrt{2} \Rightarrow \theta=\mbox{arcsec} \ \sqrt{2}

Daniel.
 
Oops! Thanks for pointing it out.

\left. \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta \right] _{\mbox{arcsec } \sqrt{2}} ^{\mbox{arcsec } 2} = \frac{1}{24}\left( -6 + 3\sqrt{3} + \pi \right)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top