Integrating 3x^3: Simplifying the Process

  • Thread starter Thread starter dan greig
  • Start date Start date
  • Tags Tags
    Integration
dan greig
Messages
41
Reaction score
0
how do i integrate,

3x^3

is it left as

3x^4/4
 
Physics news on Phys.org
Correct, don't forget the constant of integration though :smile:
 
If it's an indefinite integral, you have to add a constant.
 
you mean +c?
 
yep.. that +c is important.. and many teachers will be ready and willing to dock many points off for that :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top