Integrating a Complex Integral: Solving the Mystery of the Missing Factor 3

TSN79
Messages
422
Reaction score
0
I'm trying to perform the following integral
<br /> \pi \int\limits_0^\pi {e^{2x} } \left( {\frac{1}{2} - \frac{1}{2}\cos 2x} \right)dx<br />
I split the integral and temporarely ignore the Pi so that I get
<br /> \frac{1}{2}\int {e^{2x} dx} - \frac{1}{2}\int {e^{2x} \cdot \cos } \left( {2x} \right)dx<br />
Now, using partial integration on the second part I get
<br /> \int {e^{2x} \cdot \cos \left( {2x} \right)} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - \int {\sin \left( {2x} \right)} \cdot e^{2x} dx<br />
Using partial integration again on the right integral I get
<br /> \int {\sin \left( {2x} \right)} \cdot e^{2x} dx = - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) + \int {\cos \left( {2x} \right) \cdot e^{2x} dx} <br />
I appears I haven't gotten anywhere, but I can now combine the last two lines and get
<br /> \begin{array}{l}<br /> \int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} - \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\ <br /> 2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \end{array}<br />
Finally, multiplying in the Pi and the first initial half of the integral:
<br /> \pi \cdot \left( {\frac{1}{4}e^{2x} - \frac{1}{2}\left( {\frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right)} \right)} \right)<br />
Putting in Pi and 0 for x, and subtracting the two, I arrive at this expression:
<br /> \frac{{3\pi \left( {e^{2\pi } - 1} \right)}}{8}<br />
The problem is that this factor 3 shouldn't be there. If you just perform the initial integration on a calculator the answer is the same except for the factor 3, so where am I going wrong here?
 
Last edited:
Mathematics news on Phys.org
You messed up a couple minus signs. I'm going to copy and paste your code with corrections.
<br /> \begin{array}{l}<br /> \int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (-\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} + \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\ <br /> 2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) + \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) + \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \end{array}<br />

That should point you in right direction. Eventually, you should have something like this:

<br /> \left.\frac{1}{4} \mathrm{e}^{2x} \right|_0^\pi - \left.\frac{1}{8}\mathrm{e}^{2x}\left(\cos 2x + \sin 2x\right)\right|_0^\pi<br />

So, you'll get something: 2Y - Y = Y where Y is the answer you expect.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
4
Views
1K
Replies
96
Views
4K
Replies
6
Views
2K
Replies
13
Views
2K
Replies
4
Views
1K
Replies
1
Views
977
Back
Top