Integrating a Spherical Coordinate Problem

yaho8888
Messages
62
Reaction score
0

Homework Statement



Evaluate the integral below, where H is the solid hemisphere x^2 + y^2 + z^2 ≤ 9, z ≤ 0

\iiint 8-x^2-y^2\,dx\,dy\,dz.

Homework Equations



none

The Attempt at a Solution



\int_{0}^{2\pi} \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{3} (8-2p^2 \sin^2{\phi}) p^2 \sin{\phi}\ ,dp\,d\phi\, d\theta

do I set up the integral right?
 
Physics news on Phys.org
In polar coordinates x= \rho cos(\theta)sin(\phi) and y= \rho sin(\theta)sin(\phi) so
x^2+ y^2= \rho^2 cos^2(\theta) sin^2(\phi)+ \rho^2 sin^2(\theta) sin^2(\phi)
= \rho^2 sin^2(\phi)(cos^2(\theta)+ sin^2(\theta))= \rho^2 sin^2(\phi)
NOT "2\rho^2 sin^2(\phi).
 
ye! sorry. 8-p^2*sin^2(phi)

but if I use = \rho^2 sin^2(\phi) are the limit of this integral right for the question stated above.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top