Integrating Functions with Variables: Solving Differential Equations

CalculusHelp1
Messages
22
Reaction score
0

Homework Statement



f'(x)= x+1-yx-y

Solve for f(x)


Homework Equations



definitions of integrals and derivatives


The Attempt at a Solution



Okay, so I integrated both sides.

This gives f(x) = x^2/2 + x -integral(yx) - integral(y) +c

The problem I'm having is how do you integrate when there is a y in the function? I'm guessing this has something to do with the definition, i.e. f(x)=y=integral(f'(x)), I'm just not sure how to manipulate the equation. Does anyone know the trick to this?
 
Physics news on Phys.org
So you've got the equation y'=x+1-yx-y. This is a separable ODE, you can write it as y'=(x+1)-y(x+1). Thus y'/(1-y)=x+1.
Can you solve it now?
 
Thanks again micromass
 
micromass said:
So you've got the equation y'=x+1-yx-y. This is a separable ODE, you can write it as y'=(x+1)-y(x+1). Thus y'/(1-y)=x+1.
Can you solve it now?

ummm but he stated f(x), not a function of y. Unless I'm mistaken
 
Sorry i was given dy/dx and was asked to solve for y, i just replaced with with f(x) and dy/dx with f'(x). The solution was to separate the variables, I forgot all about it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top