Integrating Simple Expression: Solving (e^ax)cos^2(2bx)

  • Thread starter Thread starter Geronimo85
  • Start date Start date
  • Tags Tags
    Integral
Geronimo85
Messages
20
Reaction score
0
I'm supposed to integrate the following expression, and supposedly there is a very simple way to do so. Maple comes up with something rediculous, so I'd appreciate any input. Sorry about the short hand, don't know how to make everything pretty on here:

Integral[(e^ax)cos^2(2bx)dx] where a and b are positive constants

So far all I've got is:

(e^ax)cos^2(2bx)= (e^ax)*[(e^(i*2*b*x) - e^(-i*2*b*x))/2]^2

because: cosx = (e^ix - e^-ix)/2

squaring inside the brackets gets me:

(e^ax)* [((e^(i*2*b*x)-e^(-i*2*b*x)/2)^2]

I'm just really not getting something here
 
Physics news on Phys.org
e^{ax}.e^{-bx} = e^{(a-b)x}

You should be able to work from that, just factor the exponents. The final integral won't look pretty.
 
How many times are you going to post this same question?
 
Use cos^2(2bx)=[1+cos(4bx)]/2.
 
sorry about reposting it, I just feel like I'm going in circles
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top