Integrating with Negative Signs: Effects on Solutions

rizardon
Messages
19
Reaction score
0
While working on an integration problem I found that I will arrive at two different solutions depending on how I approach it.

I'm finding the arc length of y=ln(1-x2) on the interval [0,0.5]

The formula for finding the arc length is ∫sqrt[1+[f'(x)]2]dx

So f'(x) = -2x / ( 1-x2 )

Here I first simplify this to 2x / ( x2 - 1 ) and squaring gives

4x2 / ( x2 -1 )2

Working from here I end up integrating from 0 to 0.5

∫ [1 + 1/(x-1) - 1/(x+1)] dx = 0.5 - ln3

On the other hand if I leave f'(x) as it is without simplifying, when I squared f'(x) I get

4x2 / ( 1-x2 )2

and end up integrating from 0 to 0.5

∫ [1 + 1/(1+x) + 1/(1-x)] dx = -0.5 - ln3

Should both have the same solution or is this simply a possible effect from squaring numbers?

Thank you
 
Mathematics news on Phys.org
Note that when taking the square root of the perfect square in your denominator, you must use the ABSOLUTE value, |x^2-1| as your new denominator.
 
  • Like
Likes 1 person
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top