- #1
tangibleLime
- 71
- 0
Homework Statement
[tex]\int_0^1 \! \frac{x-4}{x^2+3x+2} dx[/tex]
Homework Equations
The Attempt at a Solution
Factoring out the denominator...
[tex]x^2+3x+2 = (x+1)(x+2)[/tex]
Breaking up the main fraction into the separate fractions. Since both are linear, only a single constant is needed on top.
[tex]\frac{A}{x+1}+\frac{B}{x+2}[/tex]
Fining the coefficients (A and B) by choosing x values that make the other coefficient go to zero.
[tex]x-4 = A(x+2) + B(x+1)[/tex]
[tex]x=-2[/tex]
[tex]-6=B(-1)[/tex]
[tex]6=B[/tex]
[tex]x=-1[/tex]
[tex]-5=A(1)[/tex]
[tex]-5=A[/tex]
[tex]x=-2[/tex]
[tex]-6=B(-1)[/tex]
[tex]6=B[/tex]
[tex]x=-1[/tex]
[tex]-5=A(1)[/tex]
[tex]-5=A[/tex]
Back in the integral they go. Also, breaking up the main integral into a sum of integrals.
[tex]\int \frac{-5}{x+1}dx + \int \frac{6}{x+2} dx[/tex]
[tex]-5ln(x+1) + 6ln(x+2) + c[/tex]
[tex]-5ln(x+1) + 6ln(x+2) + c[/tex]
Now using the fundamental theorem of calculus to find the value.
[tex](-5ln(1+1) + 6ln(1+2))-(-5ln(0+1) + 6ln(0+2))[/tex]
Result:
[tex]6ln(3)-11ln(2)[/tex]
Wrong. Aw.