- 4,796
- 32
[SOLVED] Integration by parts
I've been staring at this for 30 minutes and can't figure out what's wrong. I end up with 1/xi instead of xi. The book says,
\int_{-\infty}^{+\infty}te^{-t^2/2}\sin(\xi t)dt=\int_{-\infty}^{+\infty}e^{-t^2/2}\xi \cos(\xi t)dt
I set u=te^{-t^2/2} and dv = \sin(\xi t). So I get du=e^{-t^2/2}-t^2e^{-t^2/2} and unless I'm completely crazy, v=-\xi^{-1}\cos(\xi t)[/tex], so that<br /> <br /> \int_{-\infty}^{+\infty}te^{-t^2/2}\sin(\xi t)dt=te^{-t^2/2}\xi^{-1}\cos(\xi t)|_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty}e^{-t^2/2}\xi^{-1}\cos(\xi t)dt - \int_{-\infty}^{+\infty}t^2e^{-t^2/2}\xi^{-1}\cos(\xi t)dt = \int_{-\infty}^{+\infty}e^{-t^2/2}\xi^{-1}\cos(\xi t)dt<br /> <br /> HELP!
Homework Statement
I've been staring at this for 30 minutes and can't figure out what's wrong. I end up with 1/xi instead of xi. The book says,
\int_{-\infty}^{+\infty}te^{-t^2/2}\sin(\xi t)dt=\int_{-\infty}^{+\infty}e^{-t^2/2}\xi \cos(\xi t)dt
The Attempt at a Solution
I set u=te^{-t^2/2} and dv = \sin(\xi t). So I get du=e^{-t^2/2}-t^2e^{-t^2/2} and unless I'm completely crazy, v=-\xi^{-1}\cos(\xi t)[/tex], so that<br /> <br /> \int_{-\infty}^{+\infty}te^{-t^2/2}\sin(\xi t)dt=te^{-t^2/2}\xi^{-1}\cos(\xi t)|_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty}e^{-t^2/2}\xi^{-1}\cos(\xi t)dt - \int_{-\infty}^{+\infty}t^2e^{-t^2/2}\xi^{-1}\cos(\xi t)dt = \int_{-\infty}^{+\infty}e^{-t^2/2}\xi^{-1}\cos(\xi t)dt<br /> <br /> HELP!