Integration by Parts: Solving Integrals with √(1+x^2) and x

Chris Fernandes
Messages
2
Reaction score
0

Homework Statement


[/B]
upload_2016-6-2_21-5-50.png


Homework Equations


∫ f(x) g'(x) dx = f(x) g(x) - ∫ f '(x) g(x) dx

f(x)=√(1+x^2)
f '(x)=x * 1/√(1+x^2)

g'(x)=1
g(x)=x

The Attempt at a Solution


∫ √(1+x^2) * 1 dx
=x * √(1+x^2) - ∫ x^2 * 1/√(1+x^2) dx

Further integration just makes the result look further from what it's supposed to look like
 
Physics news on Phys.org
Chris Fernandes said:
=x * √(1+x^2) - ∫ x^2 * 1/√(1+x^2) dx
The latter part may help to go to your answer. You maybe can try to make it become ##\frac{x^2}{\sqrt{1+x^2}}=\sqrt{1+x^2}-\frac{1}{\sqrt{1+x^2}}.##
 
tommyxu3 said:
The latter part may help to go to your answer. You maybe can try to make it become ##\frac{x^2}{\sqrt{1+x^2}}=\sqrt{1+x^2}-\frac{1}{\sqrt{1+x^2}}.##

Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top