Integration Problem Solution Check: Is it Correct?

  • Thread starter Thread starter mdnazmulh
  • Start date Start date
  • Tags Tags
    Integration
mdnazmulh
Messages
51
Reaction score
0

Homework Statement



I solved the integration problem but i am not sure whether my solution is correct or wrong. I attached the picture of the solution.. Kindly tell me whether it is correct or wrong.

Homework Equations



This was the problem :
\int(1- \frac{x}{a} )^{\frac{1}{n}} x dx

The Attempt at a Solution


 

Attachments

  • sltion.jpg
    sltion.jpg
    46.2 KB · Views: 401
Physics news on Phys.org
I didn't check the whole thing since your solution is far more complicated than necessary. After you have, correctly, \int z^{1/n}(a- z)dz, do NOT use "integration by parts", just multiply:
\int (az^{1/n}- z^{1+1/n})dz= \int (az^{1/n}- z^{(n+1)/n})dz
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top