Solving an Integration Problem with Homework Statement

  • Thread starter Thread starter Precursor
  • Start date Start date
  • Tags Tags
    Integration
Precursor
Messages
219
Reaction score
0
Homework Statement
Use appropriate substitution and than a trigonometric substitution and evaluate the integral.

\int_{1}^{e}\frac{dy}{y\sqrt{1 + (lny)^{2}}}


The attempt at a solution

\int_{1}^{e}\frac{dy}{y\sqrt{1 + (lny)^{2}}}

ln y = tan\theta
y = cos^{2}\theta
dy = -2cos\theta sin\theta d\theta

= -2\int_{1}^{e}\frac{cos\theta sin\theta d\theta}{cos^{2}\theta\sqrt{1 + tan^{2}\theta}}

= -2\int_{1}^{e}\frac{sin\theta d\theta}{cos\theta sec\theta}

= -2\int_{1}^{e}sin\theta d\theta


How do I proceed from here? I think I have to change the limits of integration in terms of \theta instead of y.
 
Last edited:
Physics news on Phys.org
From lny=tanθ, you should get that dy/y =sec2θ dθ

giving you


\int \frac{sec^2\theta}{\sqrt{1+tan^2 \theta}}d\theta
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top