Integration: Solving Homework on $\int \frac{sin(\sqrt{x})}{\sqrt{x}} dx$

  • Thread starter Thread starter Ed Aboud
  • Start date Start date
  • Tags Tags
    Integration
Ed Aboud
Messages
200
Reaction score
0

Homework Statement



\int \frac{sin(\sqrt{x})}{\sqrt{x}} dx

Homework Equations


The Attempt at a Solution



I'm not too sure how to approach this. The only thing that rings a bell at this moment is

\lim_{x\to\0} \frac{sinx}{x} = 1

and I don't feel that it is of any relevance.

Thanks
 
Physics news on Phys.org
Use the substitution u = √x. Whats du?
 
So du = \frac{dx}{2\sqrt{x}}

2 \int sin(u) du

Cool, thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top