How Can I Integrate with Dirac Delta in this Expression?

Ado
Messages
26
Reaction score
4

Homework Statement



I need to integrate this expression :

P(k, w) = A * δ(w-k*v) * f(k, w)

A is constant and δ, Dirac Delta.

Homework Equations


[/B]
There is double integration :

I = ∫0 dk ∫0 P(k,w) dw
= A ∫∫0 δ(w-k*v) * f(k, w) dw dk

The Attempt at a Solution


[/B]
I'm confused with Delta Dirac for calculating this integral.

Let us proceed the w-variable integration firstly. Since the δ-term impose w = k*v, we need to calculate :
0 f(k=w/v, w) dw
But after that, there is no longer any k-dependence...

Of course I'm wrong.. can you explain me how to proceed ??

Thanks in advance !
 
Physics news on Phys.org
I believe you could do the integration in either order, ## dk ## or ## d \omega ## first. The delta function should get removed with the first integration, and both methods should give the same answer. When doing the ## dk ## integration first, I believe the factor ## v ## will affect the delta function, and the substitution ## u=vk ## would be useful. ## \\ ## Suggestion: Try something such as ## \int\limits_{0}^{+\infty} \int\limits_{0}^{+\infty} \exp(-\omega^2) \, \delta(\omega-vk) \, d \omega \, dk ##. When you do the ## dk ## integration first, nothing happens to the ## \omega ## in the exponential, since any ## k ## term would get converted, but ## \omega ## terms are unaffected. And yes, to get agreement with the answer where you do the ## d \omega ## first, you need the substitution ## u=vk ## when doing ## dk ## first. With this substitution, ## dk=\frac{du}{v} ##, and the delta function with the ## du ## integration integrates to unity. ## \\ ## The process when the ## d \omega ## integration is performed first is a little more straightforward. ## \\ ## (Note: Here we let ## f(k, \omega)=\exp(-\omega^2) ## with no ## k ## dependence).
 
Last edited:
  • Like
Likes fresh_42
Ado said:

Homework Statement


I need to integrate this expression :
P(k, w) = A * δ(w-k*v) * f(k, w)
A is constant and δ, Dirac Delta.

Homework Equations


There is double integration :
I = ∫0 dk ∫0 P(k,w) dw
= A ∫∫0 δ(w-k*v) * f(k, w) dw dk

The Attempt at a Solution


I'm confused with Delta Dirac for calculating this integral.
Let us proceed the w-variable integration firstly. Since the δ-term impose w = k*v, we need to calculate :
0 f(k=w/v, w) dw
You're forcing w to be a function of k but this is not right. k and w are both variables. Go
I = A ∫ ∫ f(k,w) δ(w - kv) dw dk
Sampling characteristic of the delta function leads to
I = A ∫f(k, w=kv)dk
provided (lower limit of integration) < kv < (upper limit of integration) over w.
 
You are right rude man, thank's for your help :)
 
Ado said:
You are right rude man, thank's for your help :)
Most welcome!
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top