(instantaneous) acceleration is defined as "the derivative of velocity" by the "fundamental theorem of calculus", integrating acceleration gives velocity.
No, it is not correct to say that the constant of integration IS the initial velocity. IF setting t= 0 makes everything else in the integral 0, then it is true but if, for example, acceleration is given by et then the acceleration is et+ C. The initial velocity is 1+ C so in this case the constant of integration is the initial velocity minus 1. It is much better to understand finding the constant of integration by evaluating at some given time. (Yes, most of the time that is t= 0 and often (but not always, the initial velocity is C.)
But that's not nearly as bad as saying "the constant of integration is final velocity"!
What do you do if there is NO final velocity? The integral of velocity is "displacement". Again, you determine the constant, for a particular problem by evaluating the position (displacement) function at some given time (which is often t= 0). Often, but not always, the constant of integration is the initial displacement.
Generally speaking, any quantity, that, as long as everything stays constant, is calculated by a division (speed = distance/time, density= mass/volume, pressure= force/area) is a derivative when dealing with variables and any thing that, as long as everything stays constant, is calculated by a product (distance= speed*time, mass= density*volume, force= pressure*area) requires and integral.