- #1
Anypodetos
- 17
- 1
The (classical, relativistic) Lagrangian for electrodynamics contains the field energy density -FμνFμν/4 and the interaction term -Aμjμ. I understand the maths of that - for one thing, the equations of motion turn out right if you plug this into the Euler Lagrange equantion.
Now I recall having learned that you can explain the forces between charged particles solely with the field energy: pushing 2 electrons together increases field energy because it goes with the square of the field strength, and pushing an electron and a positron together decreases field energy. If this is true, why do we need the interaction term at all? What am I missing?
Now I recall having learned that you can explain the forces between charged particles solely with the field energy: pushing 2 electrons together increases field energy because it goes with the square of the field strength, and pushing an electron and a positron together decreases field energy. If this is true, why do we need the interaction term at all? What am I missing?