irok
- 13
- 0
Evaluate the Integral:
\int \frac {2x+1}{(x^{2}+9)^{2}}
My attempt:
\frac {2x+1}{(x^{2}+9)^{2}} = \frac {Ax+B}{x^{2}+9} + \frac {Cx+D}{(x^{2} + 9)^{2}}
= (Ax+B)(x^{2} + 9)^{2} + (Cx+D)(x^{2} + 9)
= Ax^{5} + Bx^{4} Dx^{3} + (18A + E)x^{2} + (81A+9D+18B)x + 9E + 81B
I'm not sure what I'm doing wrong here since I can't find value of A B C or D.
2nd attempt:
\frac {2x+1}{(x^{2}+9)^{2}} = \frac {Ax+B}{x^{2}+9} + \frac {Cx+D}{(x^{2} + 9)^{2}}
2x + 1 = (Ax+B)(x^{2}+9) + Cx + D
Still not sure what I'm doing wrong.
\int \frac {2x+1}{(x^{2}+9)^{2}}
My attempt:
\frac {2x+1}{(x^{2}+9)^{2}} = \frac {Ax+B}{x^{2}+9} + \frac {Cx+D}{(x^{2} + 9)^{2}}
= (Ax+B)(x^{2} + 9)^{2} + (Cx+D)(x^{2} + 9)
= Ax^{5} + Bx^{4} Dx^{3} + (18A + E)x^{2} + (81A+9D+18B)x + 9E + 81B
I'm not sure what I'm doing wrong here since I can't find value of A B C or D.
2nd attempt:
\frac {2x+1}{(x^{2}+9)^{2}} = \frac {Ax+B}{x^{2}+9} + \frac {Cx+D}{(x^{2} + 9)^{2}}
2x + 1 = (Ax+B)(x^{2}+9) + Cx + D
Still not sure what I'm doing wrong.
Last edited: