Intermediate Math Problem of the Week 10/25/2017

  • Thread starter Thread starter PF PotW Robot
  • Start date Start date
PF PotW Robot
Here is this week's intermediate math problem of the week. We have several members who will check solutions, but we also welcome the community in general to step in. We also encourage finding different methods to the solution. If one has been found, see if there is another way. Occasionally there will be prizes for extraordinary or clever methods. Spoiler tags are optional.

Show that for each positive integer ##n##, all the roots of the polynomial
$$
\sum_{k=0}^n 2^{k(n-k)} x^k
$$
are real numbers.

(PotW thanks to our friends at http://www.mathhelpboards.com/)
 
Mathematics news on Phys.org
Hint: Calculate the Sturm chain and use the Sturm's theorem to count the roots.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
3
Views
3K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
17
Views
3K
Replies
1
Views
2K
Replies
6
Views
2K
Back
Top