Intersection of planes, curvature and osculating plane

trickycheese1
Messages
4
Reaction score
0

Homework Statement


The equations sin(xyz) = 0 and x + xy + z^3 = 0 define planes in R^3. Find the osculating plane and the curvature of the intersection of the curves at (1, 0, -1)

Homework Equations


Osculating plane of a curve = {f + s*f' + t*f'' : s, r are reals}
Curvature = ||T'|| where T is the unit tangent vector

The Attempt at a Solution


I guess my biggest doubt here is determining the position vector I want to be working with. Since we're looking at the point (1, 0, -1), then sin(zyx) = 0 implies that y=0. (I got this hint but I don't really understand it). So now we got the intersection x + z^3 = 0, and if we parametrize x(t) = t^3, z(t) = -t and y(t) = 0 then we get r(t) = t^3 * i - t * k where (i, j, k) is the standard basis for R^3. Now we differentiate and take lengths in turns of r to get the vectors we want to work with to get the curvature and osculating plane. Is this the correct method?
 
Physics news on Phys.org
trickycheese1 said:

Homework Statement


The equations sin(xyz) = 0 and x + xy + z^3 = 0 define planes in R^3. Find the osculating plane and the curvature of the intersection of the curves at (1, 0, -1)
I assume you mean "intersection of the planes at (1, 0, -1)"

Homework Equations


Osculating plane of a curve = {f + s*f' + t*f'' : s, r are reals}
Curvature = ||T'|| where T is the unit tangent vector

The Attempt at a Solution


I guess my biggest doubt here is determining the position vector I want to be working with. Since we're looking at the point (1, 0, -1), then sin(zyx) = 0 implies that y=0. (I got this hint but I don't really understand it).
That was given as a "hint"? It isn't true. At (1, 0, -1), yes y= 0 at that point. It does not follow that y= 0 at any other point on the curve of intersection.
From x+ xy+ z^3= 0, z= -x^{1/3}(1+ y)^{1/3} so the second equation , sin(xyz)= 0, becomes sin(x^{4/3}y(1+ y)^{1/3})= 0. Differentiate with respect to x and y.

So now we got the intersection x + z^3 = 0, and if we parametrize x(t) = t^3, z(t) = -t and y(t) = 0 then we get r(t) = t^3 * i - t * k where (i, j, k) is the standard basis for R^3. Now we differentiate and take lengths in turns of r to get the vectors we want to work with to get the curvature and osculating plane. Is this the correct method?
 
The hint wasn't from an instructor but an older student, seems it was incorrect.
If we differentiate with respect to x we get

d/(dx) sin(x^4/(3 y) (1+y)×1/3) = (4 x^3 (y+1) cos((x^4 (y+1))/(9 y)))/(9 y) = 0.

and if we differentiate with respect to y we get

d/(dy) sin(x^4/(3 y) (1+y)×1/3) = -(x^4 cos((x^4 (y+1))/(9 y)))/(9 y^2) = 0

I've only looked at examples where we work with position vectors of the form r(t) = x(t) * i + y(t) * j + z(t) * k, so I don't know what to do with the partial derivatives!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top