Introductory Acoustics Homework Help

davon806
Messages
147
Reaction score
1

Homework Statement


Hi there,
I am a beginner in acoustics and there are severals problems I am currently struggling while I was reading the first chapter of "Theory of Vortex Sound" (available on Google books).

New Bitmap Image (3).jpg


Homework Equations


For Q4[/B]:
B015988463_271-361.jpg

The Attempt at a Solution


For Q2 and 3, as underlined in the first picture, if the velocity and pressure doesn't go like 1/r , the integral will diverge as r-> inf. However, there are no 1/r terms in U0cos(wt)

For Q4,

31afc7e1-17c7-495e-9f92-248600d71349.jpg


I am not sure how to proceed, since the variable y is contained in two terms within the dirac delta,I don't know how to eliminate it.

BTW, I googled sth that might be helpful for Q4.
a.jpg


(From P.115-116 of https://books.google.co.uk/books?id...WAhVKDxoKHe_nDiQQ6AEIMjAC#v=onepage&q&f=false )

Thanks very much!
 
  • Like
Likes dundeegogo
Physics news on Phys.org
For Q2, I feel the discussion about large r that follows eqn 1.8.4 is not relevant. You have no idea what p is.
Note that in the eqn. the left side involves p and v. A substitution is then made to eliminate v in favour of p.
In Q2 you are given information about v but not p. What alternative step does that suggest?
 
haruspex said:
For Q2, I feel the discussion about large r that follows eqn 1.8.4 is not relevant. You have no idea what p is.
Note that in the eqn. the left side involves p and v. A substitution is then made to eliminate v in favour of p.
In Q2 you are given information about v but not p. What alternative step does that suggest?

Since v = U0cos(wt) and using the substitution v = p/ρ0c0 , rearranging we can solve for p. Then I use eq 1.8.4 with the integrand
pv = U0 ^2 cos^2 (ωt) ρ0 c0 .But then the integrand doesn't go like 1/r^2 ,when I integrate over the surface it gives a 4πr^2 term.

In addition, I am not sure on the difference between Q2 and Q3. I guess the surface area for Q3 is like 4πr^2,but have no idea on Q2.
 
davon806 said:
But then the integrand doesn't go like 1/r^2
You don't need it to. As I wrote, we are not here considering large r. This is the radius R of the compact sphere. We are told it makes small oscillations, so to a first approximation its area is always 4πR2.
 
davon806 said:
I am not sure on the difference between Q2 and Q3
I had not read Q3. Now that I have I realize that is the question I have been leading you to answer.
Q2 says translational oscillations, i.e. the sphere is oscillating side-to-side.
You could try to figure out the correct integral for that, remembering that the vr in the equation is the component of velocity normal to the surface element dS. Or maybe there is a shortcut.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top