Introductory Rotational Motion Question

AI Thread Summary
The discussion clarifies the concept of acceleration in the context of rotational motion and angular momentum. It explains that acceleration can involve changes in both the magnitude and direction of velocity, with linear acceleration representing changes in speed and centripetal acceleration representing changes in direction. The participant initially expressed confusion over whether acceleration could encompass both types of changes simultaneously. After further explanation, they recognized that their understanding of acceleration was correct and aligned with the definitions provided. The conversation concludes with a sense of clarity regarding the relationship between velocity, acceleration, and their vector nature.
Jazz
Messages
103
Reaction score
5
I'm beginning the chapter of Rotational Motion and Angular Momentum and it says the following which got me confused:

Acceleration.jpg

Source: http://cnx.org/contents/031da8d3-b525-429c-80cf-6c8ed997733a@8.32:68/College_Physics

When I was introduced acceleration at the beginning, it was stated that an acceleration ##a = \frac{\Delta v}{\Delta t}## can be a change either in speed's magnitude or direction; or both. In other words, in any case I would be dealing with an acceleration ##a##.

Does it mean that this is not true?
Do I need to be more specific?
If linear acceleration ##a_t## is a change in the speed's magnitude and ##a_c## a change in its direction, how is the change in speed's magnitude and direction at the same time called? Just acceleration?

Thanks!
 
Physics news on Phys.org
Velocity is a vector quantity, has both magnitude and direction. ## \vec v = v \vec {e}## where v is the magnitude of the velocity (called 'speed') and ##\vec e ## is an unit vector in the direction of the velocity.

Acceleration is also vector, the time derivative of the velocity: ##\vec a = \frac {d \vec v}{dt}##. Applying product rule ## \vec a = \frac {d \vec v}{dt} = \frac {d (v \vec e)}{dt}= \frac{dv}{dt} \vec e + v \frac {d \vec e}{dt}##. The first term is acceleration in the original direction: linear acceleration at. The second term is the centripetal acceleration, corresponding to the change of the direction.
 
ehild said:
Velocity is a vector quantity, has both magnitude and direction. ## \vec v = v \vec {e}## where v is the magnitude of the velocity (called 'speed') and ##\vec e ## is an unit vector in the direction of the velocity.

Acceleration is also vector, the time derivative of the velocity: ##\vec a = \frac {d \vec v}{dt}##. Applying product rule ## \vec a = \frac {d \vec v}{dt} = \frac {d (v \vec e)}{dt}= \frac{dv}{dt} \vec e + v \frac {d \vec e}{dt}##. The first term is acceleration in the original direction: linear acceleration at. The second term is the centripetal acceleration, corresponding to the change of the direction.

Aah, I see that the statement of the paragraph above does not contradict what I learned about acceleration, as I was thinking.

Now it's much clearer.

Thank you :)
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top