Inverse Laplace of a Mass-Spring System

happycamper
Messages
5
Reaction score
0

Homework Statement



Given a transfer function in the Laplace Domain

Detemine an expression for x(t), given f(t) is a sinusodial input with frequency omega = root(k2/m2) and amplitude of 1 N (initial conditions equal 0)

Homework Equations


[URL]http://latex.codecogs.com/gif.latex?X_1/F=(m_2&space;s^2+k_2)/(m_1&space;m_2&space;s^4+k_2&space;(m_1+m_2)s^2&space;)[/URL]

Inverse laplace 1/s^2 = t.u(t)
Inverse laplace (omega/s^2+omega^2) = sin(omega.t) . u(t)

The Attempt at a Solution



I divided the transfer function by m2 to obtain omega^2. I then brought the F over to the LHS as a sin function in the laplace domain (omega/s^2+omega^2). I have obtained the following equation

[URL]http://latex.codecogs.com/gif.latex?X_1=(1/s^2)&space;.w/((s^2&space;m_1+w^2&space;((m_1+m_2)/m_2&space;))[/URL]What is the next step? I am given inverse laplace transforms for 1/s^2 and omega/s^2+omega^2
 
Last edited by a moderator:
Physics news on Phys.org
happycamper said:
[URL]http://latex.codecogs.com/gif.latex?X_1/F=(m_2&space;s^2+k_2)/(m_1&space;m_2&space;s^4+k_2&space;(m_1+m_2)s^2&space;)[/URL]

Inverse laplace 1/s^2 = t.u(t)
Inverse laplace (omega/s^2+omega^2) = sin(omega.t) . u(t)

The Attempt at a Solution



I divided the transfer function by m2 to obtain omega^2. I then brought the F over to the LHS as a sin function in the laplace domain (omega/s^2+omega^2). I have obtained the following equation

[URL]http://latex.codecogs.com/gif.latex?X_1=(1/s^2)&space;.w/((s^2&space;m_1+w^2&space;((m_1+m_2)/m_2&space;))[/URL]What is the next step? I am given inverse laplace transforms for 1/s^2 and omega/s^2+omega^2

First, I think you have a small error in your equation. I get

X_1(s)=\frac{\omega}{s^2[m_1s^2+(m_1+m_2)\omega^2]}

since m_1m_2s^4+(m_1+m_2)k_2s^2=m_2s^2[m_1s^2+(m_1+m_2)\omega^2]

Second, use partial fraction decomposition. Say\frac{\omega}{s^2[m_1s^2+(m_1+m_2)\omega^2]}=\frac{A}{s}+\frac{B}{s^2}+\frac{Cs+D}{m_1s^2+(m_1+m_2)\omega^2}

and find the constants A, B, C and D.
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top