Knissp
- 72
- 0
Homework Statement
y'' + 2y' + 2y = t^2 + 4t
y(0) = 0
y'(0) = -1
Homework Equations
L(y) = Y
L(y') = sY - y(0)
L(y'') = s^2 Y - s y(0) - y'(0)
L(t^n) = \frac {n!}{s^{n+1}}
L(a*b) = AB
a*b = L^{-1}(AB)
The Attempt at a Solution
Take the Laplace transform of both sides.
L(y'' + 2y' + 2y) = L(t^2 + 4t)
By linearity:
L(y'') + 2L(y') + 2L(y) = L(t^2) + 4L(t)
Substitute:
(s^2 Y - s y(0) - y'(0)) + 2(sY - y(0)) + 2Y = \frac{2}{s^3} + \frac{4}{s^2}
Plug in initial conditions:
(s^2 Y + 1) + 2(sY) + 2Y = \frac{2}{s^3} + \frac{4}{s^2}
Solve for Y:
Y (s^2 + 2s + 2) -1 = \frac{2}{s^3} + \frac{4}{s^2}
Y = \frac {\frac{2}{s^3} + \frac{4}{s^2} + 1}{s^2 + 2s + 2}
Now I must take the inverse Laplace transform. This is where I get confused.
Rewrite:
Y = \frac{1}{s^2 + 2s + 2} (\frac{2}{s^3} + \frac{4}{s^2} + 1)
Distribute:
Y = \frac{1}{s^2 + 2s + 2} \frac{2}{s^3} + \frac{1}{s^2 + 2s + 2} \frac{4}{s^2} + \frac{1}{s^2 + 2s + 2}
Completing the square:
Y = \frac{1}{(s+1)^2 + 1} \frac{2}{s^3} + \frac{1}{(s+1)^2 + 1} \frac{4}{s^2} + \frac{1}{(s+1)^2 + 1}
Now to take the inverse Laplace transform of both sides:
y = L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{2}{s^3}) + L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{4}{s^2}) + L^{-1}(\frac{1}{(s+1)^2 + 1})
y = L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{2}{s^3}) + L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{4}{s^2}) + e^{-t}sin(t)
So now I need to do the separate inverse transforms (via convolutions):
L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{2}{s^3})
= e^{-t}sin(t) * t^2
= \int_0^t (e^{-(t-v)}sin(t-v))(v^2)) dv
L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{4}{s^2})[/tex<br /> <br /> = e^{-t}sin(t) * 4t<br /> <br /> = \int_0^t (e^{-(t-v)}sin(t-v))(4v) dv <br /> <br /> I don't know how to figure those convolution integrals. Any ideas? <br /> Alternatively, is there a better way to approach the problem?