Insights Intro to the Ionization Energy of Atomic Hydrogen

neilparker62
Science Advisor
Homework Helper
Insights Author
Messages
1,191
Reaction score
683
Introduction
In previous articles relating to various transition energies in Hydrogen, Helium, and Deuterium we have employed the following formula for electron energy given a particular primary quantum number n:
$$ E_{n}=\mu c^2\sqrt{1-\frac{Z^2\alpha^2}{n^2}} $$
where ## \alpha ## is the fine structure constant and ## \mu ## the reduced electron mass for a single electron bound to whichever nucleus. Z=1 for Hydrogen and Deuterium, Z=2 for Helium. Reduced mass is calculated from electron mass and nuclear mass as follows: $$\mu = \frac{m_e\times m_{n}}{m_e+m_{n}} $$.
Calculation of Ionization Energy: Atomic Hydrogen
Perhaps one of the simplest applications of this formula is the determination of the ionization...

Continue reading...
 
Last edited by a moderator:
  • Like
Likes pretty_hazel
Physics news on Phys.org
as many significant figures as Wolfram Alpha is prepared to calculate!
Unless you click on "more digits".

The WolframAlpha image has a low resolution in the article and you could have added a link to WA with the calculation filled in.
 
Many thanks - the article wasn't actually finished and I accidentally pressed submit. Anyway I'll chat to Greg and either temporarily 'withdraw' it or just do some online editing. It's very 'junky' as it stands - not even any references.

Re "more digits": I'm not sure if this option is available when you are using scientific constants as in this calculation. WA seems to put some kind of limit on the number of significant figures it will display.
 
Last edited:
  • Like
Likes Dragrath
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top