I Irreducible representations of the Dn group

Robin04
Messages
259
Reaction score
16
TL;DR Summary
Is is true that the dihedral group Dn does not have an irreducible representation with a dimension higher than two?
Is is true that the dihedral group ##D_n## does not have an irreducible representation with a dimension higher than two?
 
Physics news on Phys.org
You can see that in following way. The group has a normal Abelian subgroup of index 2. If you have an irreducible representation of the dihedral group say ##V##, restrict it to the subgroup, then it is a sum of one dimensional representation ##V=\oplus V_i##. The action of the full group is determined by the action of a representative of the nontrivial coset (remember index two). Pick one of the one dimensional spaces say ##V_1##, the representative either sends it to itself or to another one dimensional subsapce say ##V_2##. Then in the first case ##V_1## is invariant under the full group, in the second case ##V_1\oplus V_2## is. So it must be that ##V## is either one or two dimensional.
 
  • Like
Likes nuuskur, member 587159 and Infrared
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top