JasonJo
- 425
- 2
Homework Statement
A linear vector field on R^n, defined by a matrix A, is a Killing field if and only if A is antisymmetric.
Homework Equations
The Attempt at a Solution
I took R^2. Let A be the following matrix:
0 -10
10 0
A is antisymmetric. However, how in the heck is A a Killing field? For example, let
v = (1, 10), then Av = (-100, 10)
u = (2, 3), then Au = (-30, 20)
and <u, v> = 32 while <Au, Av> = 3200, so the dot product after we apply A is a multiple of the original dot product by the determinant of A (in this case it's 100).
What exactly am I misreading? The only restriction on A is that it is antisymmetric. A Killing field is a vector field that preserves the metric, i.e. in particular it will preserve the dot products of vectors.